Размер шрифта
Маленький текст
Средний текст
Большой текст

Технологии

Инженер Фред Элисон испытывает электромобиль с батареей Эдисона, 1914 г.
Инженер Фред Элисон испытывает электромобиль с батареей Эдисона, 1914 г.
internalcombustionbook.com

Батарея Эдисона вернулась на скорости

Разработаны сверхбыстрые железоникелевые аккумуляторы

Дмитрий Малянов

Эпоху недолговечных литийионных батареек сменит, возможно, эпоха долговечных железоникелевых, изобретенных еще Томасом Эдисоном. Их основной недостаток — продолжительное время зарядки — удалось устранить с помощью графена и углеродных нанотрубок.

Сотрудники лаборатории прикладной физики Хунцзе Дая — профессора Стэнфордского университета и одного из ведущих исследователей в области углеродных нанотрубок — сумели вдохнуть новую жизнь в технологию железо-никелевых аккумуляторов, разработанную Томасом Эдисоном более ста лет назад специально для нужд электрического автотранспорта.

С точки зрения стоимости и энергоемкости железо-никелевые аккумуляторы близки к литий-ионным, но намного превосходят их по части выносливости к экстремальным режимам эксплуатации — частым циклам разряда и заряда, а также к перезаряду, глубокому разряду, коротким замыканиям, термическому и вибрационному воздействиям.

Способность таких батарей выносить частые циклы разряд/заряд связана с низкой растворимостью Fe3O4 — реагента, входящего в состав их электролита.

Из-за низкой растворимости процесс образования и осаждения кристаллов железа на электродах идет медленней, что и удлиняет срок службы таких аккумуляторов, который на практике (например, в горной промышленности, где они до сих пор используются в качестве надежных резервных источников питания) может достигать 20 лет.

Спрашивается, почему долгоживущие железо-никелевые батареи не заменили ставшие столь популярными литий-ионные, менее выносливые, грешащие перегревом и ухудшением характеристик при слишком интенсивном заряде и имеющие несравнимо более короткий жизненный цикл — недостаток, отлично знакомый всем владельцам ноутбуков и мобильных гаджетов.

Ответ кроется в одном существенном недостатке железо-никелевой технологии, связанном все с той же низкой растворимостью Fe3O4:

такие аккумуляторы заряжаются очень, очень медленно.

Впрочем, также неохотно они эту энергию и отдают.

Для солнечной и ветроэнергетики, где требуется запасать энергию впрок в течение долгих часов работы, такой недостаток некритичен, и в последнее время в этой индустрии действительно наблюдается повышенный интерес к железо-никелевым батареям. А вот для автотранспорта критичен, так как заряжать электромобиль с таким аккумулятором по времени придется столько же, если даже не дольше, сколько вы на нем катались (впрочем, в качестве тяговых аккумяторов для погрузчиков и автокаров железо-никелевые батареи вполне годятся, но и режим использования этой техники совсем другой).

Собственно, избавиться от данного недостатка и удалось в лаборатории Хунцзе Дая, команда которой сумела сократить цикл зарядки/разрядки железо-никелевой батареи в 1000 раз.

Достигнуть такого результата удалось с помощью графена (двумерного кристалла углерода, состоящего из одиночного слоя атомов, собранных в гексагональную решётку) и многостенных нанотрубок — разновидности углеродных нанотрубок, состоящих из нескольких (в данном случае — из десяти) свёрнутых в трубку гексагональных графитовых плоскостей.

Вырастив методом осаждения из пара кристаллы Fe3O4 непосредственно на графеновой подложке (анод), а кристаллы гидроксида никеля — на углеродных нанотрубках (катод), исследователи получили углерод-гибридную разновидность электродов с на порядки улучшенной электронной проводимостью. С такими электродами «ультрабыстрая» железо-никелевая батарея заряжается и разряжается буквально за секунды.

Так, для полной зарядки одновольтной батареи, испытанной в лаборатории, требуется 2 минуты, а для полной разрядки — 30 секунд, притом энергоемкость железо-никелевой батареи с такими электродами больше, чем у обычной.

Конечно, такая микробатарейка — всего лишь лабораторный прототип, необходимый для точных режимных замеров и испытания электродов нового типа, но ее емкость, по утверждению исследователей, чью статью публикует Nature Communications, можно масштабировать, и тогда она уже будет конкурировать с литий-ионными.

Впрочем, о полноценной конкуренции с литий-ионными аккумуляторами, вынуждающими владельцев электромобилей на несколько часов зависать у электрических розеток, в случае с новой технологией говорить пока рано.

Как признают исследователи, энергоэффективность новых батарей «пока не идеальна», поэтому использовать их можно пока что в качестве вспомогательного источника энергии для более быстрого разгона (как мы помним, литий-ионные батареи не очень-то любят быстрые интенсивные нагрузки), а также в цикле тормозной рекуперации энергии (скачкообразную интенсивную подзарядку во время частых торможений литий-ионные аккумуляторы тоже переносят плохо — греются и быстрее разрушаются).

Не исключено поэтому, что в ближайшем будущем электромобили будут работать от аккумуляторов смешанного типа — литий-ионных и железо-никелевых нового углерод-метал-гибридного типа. Хотя до широко их внедрения потребуется отладить еще и промышленную технологию производства электродов с использованием графена и углеродных нанотрубок, а это тоже весьма нетривиальная задача.

Как бы то ни было, железо-никелевая батарея, изобретенная еще Томасом Эдисоном в начале прошлого века (до него с такими батареями экспериментировал, только неудачно, изобретатель никель-кадмиевого аккумулятора Вальдемар Юнгнер), получает вторую жизнь, прибавив к старым козырям (выносливость, долговечность и возможность долгого хранения в полностью разряженном состоянии) еще один — сверхбыструю зарядку, который имеет все шансы побить литий-ионную монополию.

Притом наиболее активно использоваться железо-никелевая будет именно там, где и хотел американский изобретатель — в электрическом автотранспорте.