Газета.Ru в Telegram
Новые комментарии +

«Выживаемость возрастает в десятки раз»

Бактерии борются с вирусами, копируя их ДНК в свою собственную

Российские ученые приблизились к разгадке механизма «обучения» генома бактерий, по которому у них возникает иммунитет к вирусам. О том, как изучали необычный «недарвиновский» иммунитет бактерий, рассказывает один из авторов работы, аспирант Института молекулярной генетики РАН Антон Тихонов.

— В чем важность исследований иммунитета бактерий, которые проводились в вашей работе?
— Работа посвящена новой недавно открытой системе антивирусной защиты бактерий — CRISPR/cas. То, что она существует и является именно системой иммунной защиты, стало известно только лет шесть-семь назад. Это очень новая популярная тема, ей занимаются многие лаборатории по всему миру. Эта система интересна тем, что работает по ламаркианским механизмам наследования: появление наследуемого признака непосредственно вызвано внешней средой. То есть

изменения происходят не в ходе случайного процесса мутаций «по Дарвину», из которых потом отбираются полезные, а при направленном воздействии среды — «по Ламарку». Это очень важный и необычный механизм «обучения» генома.

— Как работает эта система?
— Cистема состоит из CRISPR кассеты и cas-генов. CRISPR кассета — это участок ДНК, представляющий собой набор из уникальных коротких последовательностей в 20–30 пар азотистых оснований длиной (так называемые спейсеры), которые разделены повторяющимися последовательностями. Рядом с CRISPR кассетой находятся cas-гены, которые кодируют белки, необходимые для работы всей системы. Последовательности спейсеров, которые разделены повторами, совпадают с последовательностями в ДНК фагов или плазмид — внешних генетических угроз бактерии. Система способна узнавать последовательности ДНК угрожающих факторов, если они совпадают с последовательностью одного из спейсеров CRISPR-кассеты. Если такая ДНК распознана, соответствующие белки бактерии нападают на нее и уничтожают. В чем здесь ламаркианские черты? Спейсеры, которые запускают процесс уничтожения фага, берутся из самой последовательности фага. То есть ДНК бактерии изменяется не случайным, а направленным образом.

Когда бактерия встречает нового фага, она вставляет небольшой кусочек фаговой ДНК в CRISPR кассету и за счет этого «записывает» данные о нем в своей ДНК, использует их для защиты от таких фагов и затем передает этот приобретенный защитный механизм по наследству.

Процесс встраивания участка чужеродной ДНК в CRISPR кассету называется адаптацией. Это пример очень направленного генетического изменения. Однако четко механизм работы этой системы пока неизвестен.

— То есть ваша работа заполняет «белые пятна» в этой проблеме?
— Интенсивные исследования в этой области привели к тому, что сейчас ученым в целом понятно, как работает система защиты, каким образом узнается участок ДНК в фаге и как уничтожается фаговая ДНК. Однако вопрос, за счет чего набираются новые спейсеры, как происходит адаптация, оставался открытым. В нашей работе, опубликованной в журнале Nature Communications, мы подошли к ответу на этот вопрос. С помощью косвенных методов мы получили важные указания на то, что молекулярная машина, которая отвечает за узнавание и уничтожение фаговой ДНК, при определенных условиях включает процесс набора спейсеров из фаговой ДНК в CRISPR кассету.

— Каким образом?
— Предположим, что есть фаг, данные о котором бактерия уже записала в свою CRISPR кассету. Что ему нужно сделать, чтобы все-таки заразить ее? Нужна мутация в участке ДНК, который соответствует спейсеру CRISPR кассеты бактерии. Тогда молекулярная машина не сможет найти соответствующий участок ДНК и разрушить фаг. Мы показали, что это не совсем так. Хотя молекулярная машина и не может уничтожить фаговую ДНК в этом случае, она узнает фаговую ДНК и привлечет белки, которые осуществляют процесс адаптации.

Экспериментальный факт такой: если клетки заразить фагом, ДНК которого не полностью соответствует спейсеру в CRISPR кассете клетки (но все же является схожей), то адаптация в такой системе происходит на два порядка более эффективно, чем если заразить клетки совершенно неизвестным им фагом.

Наши данные позволяют предположить, что процесс адаптации происходит следующим образом. Большая молекулярная машина, состоящая из нескольких cas-белков и РНК спейсера CRISPR кассеты, узнает последовательность ДНК в фаге и связывается с ним. Если последовательность в фаговой ДНК идентична последовательности РНК спейсера (а значит, и совпадает с последовательностью этого спейсера в геноме), то молекулярная машина привлекает специальный cas-белок, которые разрезает фаговую ДНК. Но если идентичность участка фаговой ДНК и РНК спейсера не полная, то молекулярная машина привлекает другие cas-белки, которые вырезают из фаговой ДНК новый спейсер, который затем вставляется в CRISPR кассету бактерии. Процесс был назван праймингом. Пока эта красивая схема — лишь спекуляция о механизме адаптации, но мы получили экспериментальный «намек» на этот механизм — он показывает, в какую сторону надо «копать». Мы, конечно, уже ведем работы в этом направлении.

— Как вы определяете эффективность адаптации бактериальных клеток?
— У нас есть данные о генетике исходной популяции. Затем мы заражаем ее фагом, ждем какое-то время и затем секвенируем ДНК выживших клеток. Таким образом

мы смотрим, какие произошли изменения в CRISPR-кассетах, соотносим их с известными нам данными о ДНК фагов и делаем вывод о том, каким образом бактерии выжили, приспособились к новой угрозе.

Эти данные мы сравниваем с данными контрольного эксперимента, проведенного с фагами, ДНК которых были полностью неизвестны бактерии. Это позволяет нам сказать, что произошло с популяцией.

В наших экспериментах оказалось, что если мы заражаем бактерии совершенно незнакомым фагом, то лишь три процента выживших бактерий удлиняют свою CRISPR-кассету на один спейсер, соответствующий новому фагу, то есть приспосабливаются к этой угрозе среды за счет «ламаркианского» механизма CRISPR адаптации. А если мы заражаем бактерии фагом, обладающим кусочком ДНК, похожим на CRISPR спейсеры бактерии, от 50% до 90% популяции набирает в CRISPR кассеты спейсеры из последовательности фага. То есть адаптация в таком случае идет гораздо эффективнее, выживаемость возрастает в десятки раз.

— Как удалось набрести на эту мысль?
— Отчасти случайно, как это иногда бывает в науке. Мы проводили эксперименты с приспособляемостью бактерий, и идея была протестировать клеточную культуру на заведомо незнакомом фаге.

Однако по ошибке один из соавторов работы налил в чашку с бактериями как раз фаги, отчасти известные бактериям, то есть те фаги, которые несут последовательности ДНК, очень похожие на спейсеры CRISPR кассеты.

После завершения эксперимента, опять же не зная о закравшейся ошибке, мы проанализировали ДНК выживших клеток. Оказалось, что эффективность адаптации неожиданно высока. Стали разбираться в причинах, ошибка была найдена, и уже тогда эффект начали изучать более направленно.

Что думаешь?
Загрузка