Размер шрифта
Маленький текст
Средний текст
Большой текст

Космос

NASA's Goddard Space Flight Center

Cлабая магнитосферка горячего гиганта

Российские ученые придумали способ оценки магнитного поля экзопланет

Павел Котляр

Российские ученые придумали, как измерить магнитное поле далеких экзопланет. Почему у гигантских планет может быть слабое магнитное поле, они рассказали «Газете.Ru».

Ученым удалось разработать новый метод оценки магнитного поля на экзопланете — крупном небесном теле, которое находится не в Солнечной системе и вращается не вокруг Солнца, а вокруг другой звезды. В исследовании ученых, опубликовавших свои результаты в журнале Science, принимал участие сотрудник МГУ, а ведущим автором являлась выпускница Нижегородского государственного университета.

За два десятилетия, прошедших с момента открытия первой планеты за пределами Солнечной системы, астрономы немало продвинулись в их изучении. Если еще 20 лет назад событием было само открытие очередной планеты,

то сегодня астрономы готовы говорить об их спутниках, атмосферах и климате — атрибутах, которыми обладают близкие к нам планеты Солнечной системы.

Одним из важных свойств всех планет — и твердых, и газообразных — является возможность существования магнитного поля. На Земле оно защищает все живое от проникновения губительных космических частиц и помогает животным ориентироваться в пространстве.

Кристина Кислякова из Института космических исследований Австрийской академии наук в составе международной группы физиков впервые сумела оценить размер магнитного момента и форму магнитосферы экзопланеты. Среди авторов работы – Максим Ходаченко, сотрудник отдела излучений и вычислительных методов Научно-исследовательского института ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова. Ходаченко также является сотрудником Института космических исследований Австрийской академии наук.

Планета HD 209458b (Osiris), горячий Юпитер, примерно на треть легче самого Юпитера и примерно на треть крупнее него, является раскаленным газовым гигантом, обращающимся по близкой орбите вокруг своей звезды HD 209458, благодаря чему планета сильно раскалена. Год HD 209458b длится всего 3,5 земных дня. Она давно известна астрономам и относительно хорошо исследована. В частности, это первая планета, на которой удалось обнаружить присутствие атмосферы. Поэтому для многих ученых она стала модельным объектом для развития их гипотез.

При помощи космического телескопа «Хаббл» ученые провели наблюдения звезды HD 209458 в линии водорода в момент транзита – когда планета оказывалась между Землей и самой звездой. Выяснив, как свет звезды поглощается атмосферой планеты, ученые смогли оценить форму газового облака, которое ее окружает, а из этого – размеры и конфигурацию магнитосферы.

«Мы смоделировали формирование облака горячего водорода вокруг планеты и показали, что лишь одна конфигурация удовлетворяет наблюдениям, которая соответствует определенным значениям магнитного момента и параметрам звездного ветра», — пояснила Кристина Кислякова.

Для полноты модели ученые учитывали много факторов, определяющих взаимодействие солнечного ветра с атмосферой планеты – так называемую перезарядку атомов звездным ветром и их ионизацию, гравитацию, давление излучения, а также спектральное уширение линий.

Согласно существующим представлениям, размеры оболочки атомарного водорода определяются взаимодействием истекающего с планеты газа с протонами, входящими в состав звездного ветра.

Как и на Земле, взаимодействие атмосферы со звездным ветром происходит выше магнитосферы, поэтому, зная параметры облака атомарного водорода, с помощью модели можно оценить размер магнитосферы.

Так как непосредственно измерить магнитное поле экзопланет в настоящее время невозможно, используются косвенные методы, например при помощи радионаблюдений. В том числе ранее проводились и радионаблюдения планеты HD 209458b. Но в силу большого расстояния попытки зафиксировать радиоизлучение экзопланет до сих пор остаются безуспешными.

«У планеты оказалась относительно небольшая магнитосфера с радиусом всего 2,9 радиуса планеты и с магнитным моментом лишь 10% от магнитного момента Юпитера», — пояснила Кислякова, выпускница Нижегородского государственного университета имени Н.И. Лобачевского. По ее словам, это вполне согласуется с оценками эффективности планетарного динамо для данной планеты.

«Этот метод может работать для любой планеты, в том числе для планеты земного типа, при условии наличия протяженной оболочки высокоэнергичного водорода», — подытожил Максим Ходаченко.